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Abstract— In this work we study the architecture selec-
tion problem for NLDA networks, a novel feature extraction
method proposed by the authors. Although several proce-
dures can be followed for this purpose, we shall concentrate
here on the concept of unit saliency, measured in terms of
the effect on the NLDA criterion function of variations on
the network weights near a minimum. Second order deriva-
tive information is needed for this study, whose computation
is given for NLDA networks with just one hidden layer. A
numerical illustration of the proposed method is also given.

I. INTRODUCTION

Non Linear Discriminant Analysis (NLDA) is a novel
method of feature extraction in pattern recognition which
has been successfully applied to difficult classification prob-
lems with markedly better results than those of Multilayer
Perceptrons (MLPs)[4], [12]. The NLDA network architec-
ture is similar to the feedforward one used in Multilayer
Perceptrons (MLPs), having one input, one or several hid-
den layers and one output layer, with sigmoid connections
between the input and hidden layers, and linear output
connections. The main difference with MLPs is the crite-
rion function employed. Instead of the standard minimum
square error, NLDA network training is done by minimiz-
ing a Fisher’s discriminant analysis like criterion function,
such as, for instance, the ratio Sl

Sw
\-7 (W) - | SBl ’
of the determinant of the within class covariance matrix Sy
to that of the between class covariance matrix Sp. They
are defined as

c
Sp =Y Ni(M; — M)(M; — M),

c
Sw =5,

i=1
where N;, i =1,...,C, is the sample number of elements of
the i—th class and M; that class sample mean, M denotes
the total mean and S; the i—th class covariance matrix. As
with MLPs, NLDA network architecture has to be some-
how decided upon. Of course, input pattern dimension
corresponds to the number of input units and because of
the criterion function used, the output layer will have C'—1
units in a C class problem, as it is customary in Fisher’s
analysis. The number of hidden layers and of units in each
one have still to be settled. This can be done in an empir-
ical fashion, for instance setting before hand the number
of hidden layers and then considering for each layer sev-
eral unit numbers. The corresponding networks are then
trained and the final architecture is those of the “best”
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final network. Several alternatives to this approach have
been introduced for MLPs. We shall consider here network
“pruning”, that is, to start with large networks with many
hidden units, whose number is progressively reduced until
network performance degrades or there is not a clear indi-
cation on whether any further unit has to be taken out. For
MLPs, a principled approach to this type of architecture
selection can be established from the asymptotic properties
of network training. The starting point is to consider net-
work learning as a quasi-maximum “likelihood” estimate
[7], [13]. If a large number of sample patterns {X;, X, ...}
is available, and we denote by Wy, the optimal weight for
the N—th sample Sy = {X1,..., Xy}, that is,

W5 = arg ming, E(W),
where

2
’

R 1 < X,
EW) = WZHF(Xi,W) -7

with F(X, W) is the network’s transfer function and T%:
an appropriately chosen target vector, it can be then shown
that under certain conditions, if these W5 converge to a
minimum W* of the distribution-based error function

BW) = [IF0ew) - TX PO,
we then have that N(W% — W*) converges in distri-

bution to a zero mean normal with covariance matrix
HW*)'I(W*)H(W*)~1. Here denoting the gradient
Vw||F(X,W*) —TX||? as G(X, W), we have

HW®) = / Vi G(X, W) f(X)dX,

W = / G(X, W)G(X, W) f(X)dX.

I is called the network’s Fisher’s information matrix. This
can be used in two different approaches to network architec-
ture selection. The more general one leads to the Network
Information Criteria of Amari [2], [9], which extend to MLP
learning the well known Information Criteria of Akaike [1].
An alternative approach uses the preceding convergence re-
sult to derive a Wald-like test for weight significance [11],
that measures it by the quotient of its square to its vari-
ance. According to the previous asymptotic result, this
quotient is then for a weight w;

w}
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This approach lies at the core of network pruning meth-
ods such as Optimal Brain Damage (OBD) [8] or Opti-
mal Brain Surgeon (OBS) [6]. Although having a much
more heuristic foundation, both methods can be seen as




providing approximations to the previous ratio. To ar-
rive, for instance, at OBD, the equality H(W*) = [(W*),
valid under some circumstances, is first used to replace
HW*)LI(W*YH(W*)~! by HW*)~!, and then H(W*)
is approximated by the diagonal diag(8?E/dw?)(W3) of
the Hessian of the sample error function E. It thus follows
that
(HW*) " IWHHW) Y =~ HW) )
1

(O2E/0w})(WR)’

1R

and, therefore, X
2 2
S S = S Wil
HW*)=UI(W*)H(W*)=1.. — dw? ¢
To apply these considerations to NLDA networks we should
have to develop first for them the asymptotic theory that
lies at the foundation of the preceding MLP discussion,
an open question at this moment. Following instead the
initial formulation of OBD [8], we will adopt in this work a
simpler approach, considering the sensitivity of the NLDA
criterion function with respect to network weights. We will
start with a Taylor expansion of J(W) at the vicinity of
a minimum W*, which yields the following formula for the
variation 4.7 of the criterion function on a neighborhood

of W* = (w?):
Zgiéwi + % Z hiidwf +

K3

We will disregard cubqiécj and higher order terms. Since we
are at a minimum, the coefficients g; = 8.7 /Ow;(W*) van-
ish, and we are left with the second order terms, where we
introduce a further simplification, looking just at the diag-
onal terms, which reflect the direct influence of a weight w;
on §.7. That is, if all the other weights are unchanged, a
variation dw; on w; results in a variation 67 =~ hyéw? /2.
This suggests the “weight saliency” value [8]

sal(w;) = %(W*)w? (1)

We shall use the saliency (1) to prune NLDA network ar-
chitectures, which makes necessary the computation of the
first and second order partials of the criterion function 7.
NLDA optimal weights are computed in an iterative fash-
ion that combines the classical Fisher eigen—computations
[5] for output weights with a numerical, gradient based pro-
cedure for the remaining weights. This procedure and also
the just mentioned gradient computations are given in [12];
they shall briefly reviewed in the next section, as they are
needed for the computation of the second order partials of
J. We will give this computation in the third section. The
paper will end with a numerical illustration.

II. NLDA NETWORKS GRADIENT COMPUTATION

The weight set W of a general NLDA network can be di-
vided in two groups, which we denote as W = (W W©).
Here WO denotes the weights of the linear connection be-
tween the last hidden and the output layer. WH denotes
the weights connecting the input to the first hidden layer

and then all the other hidden layers. Having in mind their
update formulae, we will divide the WH into two weight
subsets, WH = (WHe WHr), with the WHt connecting the
last two hidden layers, and all other previous connections
captured by the W#». Notice that in a single hidden layer
network (as the ones considered in our illustration) there
are no WHr weights, and therefore WH = WH:,

NLDA weights are computed iteratively, and updates are
done in a two step fashion, derived from considering the
global criterion function as depending separately on the
WO or the WH. In other words, assume that the optimal
weights W;_1 = (W2, W} ,) at the global step ¢t — 1 have
been computed. Then
1. The new W are obtained by keeping the W2, weights
fixed and minimizing JO (W) = J(WH,,W©). This can
be simply done by applying Fisher’s classical discriminant
analysis having as features the last hidden layer outputs.
2. Once the W have been computed, we now obtain the
WiH weights by minimizing JZ(WH) = 7(WH WP). But
here, in contrast with the simple eigenvalue procedure of
Fisher’s analysis we can use to obtain the W, we have to
rely now in a purely numerical method, for which we will
need to compute the gradient of the criterion JH (WH).
We will show how next.

Given the MLP-like preprocessing of the first hidden lay-
ers, WHe weight gradients can be computed by standard
backpropagation once the gradient V i u, JH (W) with re-
spect to the WH¢ are obtained. The starting point in grad1—
ent computatlons is thus to obtain the partials 0JF / 8wkl ,
with wp* denoting the weight connecting the k-th unit of
the preceding layer with the [—th unit of the last hidden
layer. For simplicity we will drop in what follows the /¢
subscript and write w}? instead of w,ﬁl. These partials
are in turn obtained using as auxiliary coordinates the last
hidden layer outputs and activations. More precisely we
denote as X;; the values at the one-before-the-last hid-
den layer of the j—th input pattern, 1 < j < N;, of class

, 1 <4 < C, with N; the number of sample patterns
in class ¢, and N = ZIC N; the total number of pat-
terns. If there is just one hidden layer, the X;; are just
the network inputs. Assuming D units in this layer, we
thus have X;; = (zj;,. .., 2] Dyt. We also use the notations

aly = S0 wenal;, 1 < h < H, for the activations in unit
h of a last hidden layer with H units produced by the X;;
and of; = f(al;), 1 < h < H, for this layer’s outputs (in
our 111ustration f will be the standard sigmoid).
Assuming a two class problem and, hence, a single out-
put, the partial criterion function with respect to the
; H
weights W** reduces to s (WH.WO)

Jt (WH) H WO )
with §y and §p the now scaﬁar valued 6utput covariances.
Droppmg the ¢ index of the criterion function and using the
outputs o i; and activations ah as intermediate variables, it
follows that

oJH c X dJH dof; dalk
owf ZZZ dol; 8ah kal

i=1 j=1 h=1
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The scalar valued §p and Sy can be rewritten using their
last hidden layer counterparts Sp and Sy as

H
§p o= > (w)(Sp)an +
h=1
H H
2y > wiwi(Se)ww,
h=1h'=h+1
H
swo= Y (W) (Sw)wn +
h=1

H H
2> > wiwi (Sw)aw,
h=1 h'=h+1
with w§ the weight connecting the h-th unit of the last
hidden layer to the network’s single output. The hidden

layer scatter matrices are now given by

ZZ i = Mi)(0i; = M),
i=1 j=1
c
Sp =Y Ni(M;— M)(M; — M)".
i=1
Here we have used the notation Oy; = (o};,...,0f)", and
also M; = (m},...,mi)t = L 37 Oy for the means M;

of the last hidden layer outplfts of the elemergcs of ]cvlass i,
i=1,...,C,and M = (m",...,m")" = & 3707 377, Oy
for the same outputs’ total mean M. It follows from the
definitions of M; and M that

6mi’ i(S 0.; a_mh — i(g
80 Ni hlOci, aoéj - N hi-
Slnce@f(rgvm) the éB and SW deﬁnitions we have
% = 6hl( —m )+6h’l( _mh)’
j
8(‘SVI/V)]‘Lh’ ’ ,
oo, = omol —mi) (ol —mi),
it follows tJhat u
03B
pol, — 20f L uk(mi—m")
ij -
0sw
. 2w}’ Z w (o U m). (3)

ij
from which the partials 9. i / 80 and then the 0.J /wil
can now be easily computed.

III. NLDA NETWORKS HESSIAN COMPUTATIONS

In principle, weight saliency, as given by (1) could also
be studied on the Fisher weights connecting the last hidden
layer to the outputs. However, the corresponding Hessian
would have (C — 1) x H rows, but rank (C — 1) x H — 1,
for the Fisher’s weights are unique only up to dilations.

Thus, although being quite simple to compute, this Hes-
sian will not be considered here. We will thus concentrate
on the second partials with respect to the remaining net-
work weights. Again, the MLP-like network architecture
allows to use for NLDA nets the second derivative proce-
dures available for MLPs [3], once the second partials have
been computed for the WH¢ weights, which we do next.
The starting point is formula (2), which we write as

ZZ

i=1 j= 1
where we will use from now on the notation Agf]" =

oJH
8wkl

f'(ap,)zp,. We have now
0?1 4 kl
owl dwh 21 Z 3wH dol; *
=1 j=1
6JH aAkl
> Z ~pull, (4
i=1 j=1 mn

It is easily seen that in (4)

QAk
1y,.k
Sai- = (@) 7520,
mn . .

so that the second term can be written in terms of
this quantity and the partials 8J% /aol,.j already avail-
able from gradient computations. We turn our attention
to the first sums and, more specifically to the partials
9?JH |ow,Y,80.;. To compute them, we use again the val-
ues oﬁq as 1ntermediate values, and reasoning as in the pre-

ceding section, we have

82 JH R R L
owH dol. ZZZ dop, 80, Boh fol “1pa Ot
mn= g p=1q=1 h=1
o 60” 60
Using (2) for the second order partlals we have
o2.JH ) l 1 (S Ow _ 6§B>
A - Pl LA il
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B 2 d3p e dsw 5 03p +
~ & oo, \Tad; " ad,
i 03B 08w 0%5w
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1 (03w 05 _  O%p
2 6 n 9. SW o Al n
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_ 1050 05w 5w Dsn 05
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1 9%w 1 05w 05p

3n 90 Oob. 32 dom Hot.
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2 n Aol

B 00p5,00;



We will obtain next the values of the last partials using
that, from (3), we have

0%3p dmhk  Omh
Gorgol = 2wl wl ( " Bon )
dop, 90}, Z dor,  don,
0; 1
— 00 -
= 2w (N N)
82§W 8m’-’
dop, 0l Z 60 doy,
5z
= 2wlow,?(5,~p6jq - FI;)

Therefore, rearranging the preceding partials so that those
of second order (the ones that involve new computations)
appear first, we have
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Adding the remaining sums,
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where we have used (2) in the last equality. Notice that at
a minimum of J, the 8J% /0w term will vanish.

As mentioned in the introduction, in this work we shall

be interested only on the diagonal terms of the Hessian,

f”( zg)xu wu(slﬂd



that is, 0% JH /0w?,, evaluated at minima W* of J#. Set-
ting m = k and n = [ in the preceding formulae, we have
for these points

o2 JH 2(wP)?
= Ak2 _
awil §B ;( l])
2
2(“’10)2 < 1 o Kkl
i (HJ)ZM Z oo+
=1 Jj=1
2
2(“’10)2 J* Akl
" i N DAL+

i,J
aJH .
S Sk,

27-7
with J* = §w/3p the minimum value of the target func-
tion.

IV. A NUMERICAL ILLUSTRATION

We will close this work with an illustration of network
pruning by the removal of those weights with the lowest
saliencies in a 2 class synthetic classification problem. Both
classes are unidimensional, with the first one, Cy, following
a N(0,0.5) distribution and the other one, Cy, being given
by a mixture of two gaussians, N(—2,0.5) and N(2,0.5).
The prior probabilities of these gaussians are 0.5, which
is also the prior probability for both classes. As a clas-
sification problem, it is an “easy” one, for the mean er-
ror probability (MEP) of the optimal Bayes classifier has
a rather low value of about 0.48 %. On the other hand,
the class distributions are not unimodal, and neither lin-
early separable. NLDA networks will thus realize feature
enhancing rather than feature extraction. Observe that,
as it is also the case with MLPs, the outputs of a NLDA
network are just a new feature set that can be used to con-
struct an appropriate classifier. A possible way of doing so
(and the one used here) is to compute the projections pg,
p1 of the sample means of each class, and use the classifier
6NLDA : {X} - {0, ].} defined as

6(X) = dncpa(X)

= argming, {|F(X, W) — pol, |[F(X,W") — |},
with F' the NLDA network transfer function and W* the
criterion function minimizing weights.

We shall consider simple NLDA networks, with 1 x H x1
architectures, and a total weight number of 3H (H weights
connecting the H hidden units to the output, H weights
connecting the input to the hidden layer, and one bias pa-
rameter for each one of the H hidden units). We shall
denote by whH the weights connecting the single input unit
to the unit h at the hidden layer and by b, this unit’s bias;
w§ will denote the weight from this unit h to the single
output unit (there are no bias at NLDA output units). It
is easily seen that the optimal architecture for this problem
just needs 2 hidden units: one hidden unit is not enough
for the transformation function used (although it could be
if, for instance, f(x) = x? is used instead of the sigmoidal)

Hidden unit numbers
Units 1 23| 4 5| 6| MEP;s
6| 7271|015 | 129 | 47 0.48
51 73] 0 1125 | 43 0.48
4| T4 1128 | 44 0.49
3| 81 135 | 40 0.48
2| 127 133 0.48
TABLE I

EVOLUTION OF A SALIENCY BASED UNIT REMOVAL RUN. UNIT
SALIENCIES ARE SHOWN IN THE FIRST 5 NUMERICAL COLUMNS, WITH
EMPTY SPACES INDICATING REMOVED UNITS. SALIENCY VALUES ARE
ROUNDED TO THE NEAREST INTEGER. THE LAST COLUMN INDICATES

THE MEP VALUE OF THE RESULTING CLASSIFIER.

while with 2 units the MEP of the dyrpa classifier coin-
cides with the optimal value of 0.48.

In order to apply (1) here to network pruning we have
considered wunit removal rather than just setting a low
saliency weight to 0. To do so, we will look at the pairs
(wi ,bH) just defined and will remove a given hidden unit
if the sum of the saliencies of both values are sufficiently
small. In other words, in our illustration we will start train-
ing networks with a “large” number of hidden units, and
to decide then whether or not to remove a hidden unit h
depending on the value of its joint saliency, that is

1) = 27w + ZE e 6)
sa. = 0(wf)2 wy, + 2 n) -
Another way to discard a hidden unit ﬁ could be to apply
to the weight w§ that connects it to the output one of
the tests for feature significance available in Fisher analysis
[10]. Although not pursued here, this approach will also be
considered in subsequent work.

The initial number of hidden units was 10, and network
training was started first at random initial weights. How-
ever, at the end of each training session, the unit with the
smallest saliency, as given by (5) was deleted, and network
training started from the weight values arrived at for the
other units. Table I contains the last five steps of the evo-
lution of one such a run. When rows go down, the empty
spaces indicate removed units. Notice that for some net-
works several units could be taken out as having saliencies
quite smaller than others. This was not done however,
units being removed one by one. The last column of the
table shows the MEP values of the dnxrpa classifier after
training is finished. All the MEP values are near the Bayes
optimum of 0.48%. However, when the lowest saliency unit
of a 1 x 2 x 1 network is removed, the MEP value of the
resulting 1 x 1 x 1 network shots up (to a 25% value for the
run of table I). Similar MEP values were obtained in dif-
ferent runs, although unit saliency magnitudes did differ.
In any case, final 2-dimensional hidden features showed a
similar structure, with the peaks of the underlying gaus-
sians being projected to a right isosceles rectangle. In the
case of table (I), —2 went to the point (1,1), 2 to (0,1)
and 0 to (0,0)). The final network weights had also similar
magnitudes, modulo signs and unit reflections. This seems
to indicate a rather robust procedure.




V. CONCLUSION

We have introduced a pruning procedure for NLDA net-
works based upon the notion of unit saliencies. They are
computed in terms of the Hessian of the network transfer
function, for which analytical formulae are given. Although
the starting point here for the consideration of saliencies
is a second order approximation to the criterion function,
saliency can also be seen from the perspective of the sta-
tistical testing of the relevance of an estimated parameter.
Work is being done in this direction, and also on the use
for unit pruning of tests derived from those available in
Fisher’s analysis.
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